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Abstract. We propose a theory of deterministic chaos for discrete systems, based on their
representations in binary state spaces�, homeomorphic to the space of symbolic dynamics. This
formalism is applied to neural networks and cellular automata; it is found that such systems cannot
be viewed as chaotic when one uses the Hamming distance as the metric for the space. On the
other hand, neural networks with memory can in principle provide examples of discrete chaos;
numerical simulations show that the orbits on the attractor present topological transitivity and a
dimensional phase space reduction. We compute this by extending the methodology of Grassberger
and Procaccia to�. As an example, we consider an asymmetric neural network model with memory
which has an attractor of dimensionDa = 2 forN = 49.

1. Introduction

Recently, discrete systems with a complex dynamical behaviour have received a great deal
of attention, for their relevance in fields ranging from theoretical biology to quantum gravity.
For example, asymmetric neural networks [1–4] can have a complicated dynamical behaviour
which is reminiscent of ‘chaos’. Also cellular automata display [5] bifurcations between
several possible dynamical regimes [6], the most disordered of which has been described as
‘chaotic’ [7]. Yet it is unclear precisely how this type of dynamics in discrete spaces is related
to deterministic chaos in a Euclidean phase space.

In this paper we will examine how the definitions of deterministic chaos can be translated
to the context of discrete state spaces. This will lead us to a formalism which we call ‘discrete
chaos’, that allows one to decide whether or not the complex dynamics of some finite systems
can be viewed as chaotic in the limit in which the system grows to infinity.

Unfortunately, for most finite systems there is no convenient quasi-representation in terms
of real variables. For example, in neural networks and cellular automata the relevant distance
is the Hamming distance; this induces a discrete topology on the space of states that is distinct
from the usual topology ofRn. There are different points of view on this problem, ranging from
the fundamentalist, which concludes that a finite system cannot be viewed as approximately
chaotic, to the liberal, which reduces the definition of chaos to the exponential growth of the
limit-cycle period with the size of the system.
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Our feeling is that chaos should not be limited to real variables, as these are idealizations
of a reality which could be viewed equally well in terms of finite state spaces. Indeed, the
fact that most real numbers have infinite algorithmic information [8] is not really satisfactory
from a physicist’s point of view. Yet some form of idealization is necessary to define chaos
rigorously.

Our purpose in this article is to propose a different idealization, inspired from symbolic
dynamics [9–13]. We will assume that one is given a representation of the system through
a sequence ofN -bit vectors. For example, one might consider the case where the different
binary words carry information about the system at increasing temporal depths, e.g. by giving
theN -bit description of the system at every past tick of a clock. In general, thestateof the
system will be given by

S = {S(0),S(1), . . . ,S(n), . . .}
whereS(n) is a vector with componentsSi(n) = 0, 1, (i = 1, . . . , N). The set of such binary
states will be denoted by�.

The approximation which makes this concept practical, akin to the 128-bit version of
floating-point variables, is the truncation of the symbolic states to the firstn words. This is a
good approximation if the difference between states which coincide in the firstnwords belongs
to a small neighbourhood of the origin. We will formalize this demand through the assignment
of a base for the topology on�, related to the cylinders of symbolic dynamics [10, 13].

With this topology, the space� is homeomorphic to the one-sided shift space of symbolic
dynamics. Our main contribution is to provide a definition of chaos for general dynamical maps
in�. In symbolic dynamics one usually considers the shift mapσ , which consists of erasing the
wordS(0) from the semi-infinite sequence and shifting the other slices byS(n) −→ S(n−1)
[10]. This example satisfies our definition of discrete chaos. But we stress that this is only one
of many possible chaotic maps in�.

We will consider functions which are continuous or discontinuous. Neural networks
and cellular automata will turn out to be examples of discontinuous functions. For general
discontinuous functions very little is known, basically due to the fact that analytically there
is very little that one can prove. However, numerically one can distinguish several types of
dynamical behaviour. InRN the Grassberger and Procaccia method is widely used to estimate
the fractal dimension of attractors. We will extend its application to the space� in order to
characterize different chaotic behaviours and define an effective attractor dimension.

One important class of maps which we will consider in this paper corresponds to the case
when the binary state represents the system at every past tick of a clock, as explained above. To
define such a map one must provide a function which allows one to compute the new wordS(0)
from the stateS. The left inverse of any such map is the shift mapσ of symbolic dynamics.
Examples include neural network models and cellular automata. Note that in this case not all
points of� represent possible histories; instead,� plays the role of an embedding space for
the attractor.

The results of this paper can be generalized without difficulty to other alphabets besides
the binary one, and also to the case where the space� is the two-sided shift space [11, 12],
where a state is given by a sequence

{. . .S(−1),S(0),S(1), . . .}.
In this case our construction reduces to the invertible shift map whenS(n) is taken to be

the binary description of the system but once again we stress that this is only one of several
possible dynamical mapsF : � −→ �.

The organization of this paper is as follows. ‘Discrete chaos’ will be defined in section 2
and different types of dynamical maps in� are discussed. In section 3 we will consider the
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correlation functionC(ρ) and the Grassberger–Procaccia method to compute the correlation
dimension of the attractor. Numerical examples will be considered in section 4. In section 5
we give the conclusion.

2. Chaotic dynamics of binary systems

Binary systems, like cellular automata and neural networks, are described, in general, by a
set ofN binary variablesSi , i = 1, . . . , N , or in shortS, that evolve according to dynamical
rules. The natural metric for these systems is the Hamming distance

dH (S − S ′) ≡
N∑
i=1

|Si − S ′i |.

The space{S} has 2N possible states and so the topology constructed fromdH is discrete.
Generally one is interested in studying these dynamical systems in the limitN → ∞ since
that is where interesting statistical properties appear, such as phase transitions, and it is possible
to use powerful techniques like mean field theory [1–4]. Furthermore numerical simulations
which need to be done for finite, but largeN , are understood as approximations of a system
with infinite variables, much in the same way as floating point variables in computers are finite
approximations of real numbers which generally have an infinite number of digits. Nevertheless
forN →∞, dH is no longer a distance and the topology is ill defined in that limit. That makes
our understanding of binary systems quite different from that of dynamical systems inRd or in
differentiable manifolds where one works with the usual topology of the real numbers. Here
we will overcome this situation by extending the phase space{S} to have an infinite number
of states while preserving the equal status that the Hamming distance confers to each of the
variables. That is to say, all the variablesSi give the same contribution to the distance for anyi.

Let us consider the Cartesian product of infinite copies of{S} and call this space�. We
denote the elements of� by

S = (S(0),S(1),S(2), . . .). (1)

We make� a topological space by introducing the following base:

Nn(S) = {S ′ ∈ �|S′(m) = S(m), ∀m < n} (2)

with n = 1, 2, . . . . These base sets are closely related to the cylinders in one-sided shift spaces
and� is homeomorphic to the space of symbols of the symbolic dynamics with 2N symbols
[10, 11]. It follows that� is a cantor set. In symbolic dynamics the topology is usually derived
from the metric

d(S, S ′) =
∞∑
n=0

1

2n
dn(S − S ′) (3)

where

dn(S − S ′) ≡
N∑
i=1

|Si(n)− S ′i (n)| (4)

is the Hamming distance of thenth copy of{S}. One can check that ifS(m) = S′(m) ∀m < n

thend(S, S ′) < N+1
2n−1 , so that (2) and (3) define the same topology.

Here and in the following our purpose is to study dynamical systems in� generated by a
functionF : � −→ �. This function may be continuous or discontinuous, unless explicitly
stated below. Allowing discontinuous functions in principle opens the door to a richer variety
of systems, which include neural networks and cellular automata.

We begin by generalizing in a natural way the definitions of chaos in subsets ofRN (see
for example [11]) to�.
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Definition 1. F hassensitive dependence on initial conditionsonA ⊂ � if ∃n ∈ N 3 ∀S ∈ A
and∀Nm(S)∃S ′ ∈ Nm(S) ∩A andk ∈ N such thatFk(S ′) /∈ Nn(F k(S)).
Definition 2. LetA ⊂ � be a closed invariant set.F : � −→ � is topologically transitive
onA ⊂ � if for any open setsU,V ⊂ A ∃n ∈ Z 3 Fn(U) ∩ V 6= ∅. In the last expression,
if F is non-invertible we understandF−k(U) with k > 0, as the set of all pointsS ∈ � such
thatFk(S) ∈ U .

Definition 3. LetA ⊂ � be a compact set.F : A −→ A is chaoticonA if F has sensitive
dependence on initial conditions and is topologically transitive onA.

Definition 4. A closed subsetM ⊂ � is called atrapping regionif F(M) ⊂M.

Property 1. If F is a continuous function in�, Fn(M) is compact and closed∀n ∈ N.

Proof. Since every closed subset of a compact set is compact, it follows thatM is compact
and sinceF is continuousFn(M) is compact. Since� is Hausdorff every compact subset of
it is closed, soFn(M) is closed [14]. �

Definition 5. The mapF : � −→ � has anattractorif it admits an asymptotically stable
transitive set, i.e. if there exists a trapping regionM such that

3 ≡
⋂
n>0

Fn(M)

andF is topologically transitive on3.

Note carefully that the trapping region is defined in the� space while in the theory of
dynamical systems in manifolds, it is defined in the manifold [10–13, 15]. This makes most
theorems (as those shown in [15]) concerned with Cantor sets considered as attractors in
manifolds to be not applicable.

Property 2. If F is a continuous function in�,3 is compact and closed.

Proof. From property 1 ifF is continuous,3 is an intersection of closed sets, so it is closed.
Since every closed subset of a compact space� is compact, it follows that3 is compact. �

Definition 6. 3 is called achaotic attractorif F is chaotic on3.

Lemma. LetF be a continuous function in�, if 3 is a chaotic attractor then it is perfect.

Proof. By property 2,3 is closed. It remains to prove that every point in3 is an accumulation
point of3. By contradiction, letS0 ∈ 3 be an isolated point, then there existsn ∈ N 3
Nn(S0) ∩3 = {S0}. Then, by topological transitivity3 has an isolated orbit (the orbit ofS0)
which implies that it is not sensitive to initial conditions on3. �

Theorem. If F is a continuous function in�, and3 is a chaotic attractor then it is a Cantor
set.

Proof. The theorem follows directly from property 2, the lemma and the fact that a subset of
a totally disconnected set is also totally disconnected. �

In the following we will consider some examples of dynamical functionsf : � −→ �.
The first one is the one-side shift mapσ of symbolic dynamics which we introduce to familiarize
the reader with the notation.
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(i) The one-sided shift mapσ .

The continuous mapσ defined by

σ(S(0),S(1), . . .) = (S(1),S(2), . . .) (5)

is chaotic in� [10]. Note thatσ is non-invertible and its action loses the information carried by
the binary stateS(0). The meaning and usefulness of this map is quite clear in the context of
symbolic dynamics when the Conley–Moser conditions are satisfied [16]. There one studies,
in general, a non-invertible functionf : 4 −→ 4 where4 is a Cantor set embedded inRN .
The set4 is divided in 2N sectorsIα α = 0, 1, . . . ,2N . Then it is possible to establish a
topological conjugation betweenf andσ through a homeomorphismψ , so that the following
diagram commutes [11]

4
f−→ 4

ψ ↓ ↓ ψ

�
σ−→ �

. (6)

Moreover, letS = ψ(x), thenS(n) is the binary decomposition of the labelα, such that
f n(x) ∈ Iα.

(ii) Chaotic maps with non-trivial attractors in�.

The shift map can be modified to create maps which are homeomorphic to the shift map
on an asymptotically stable transitive subset of the space of symbols. We introduce two very
simple examples.

Take the space of symbols� with N = 2, homeomorphic to4×4 where4 is the space
of symbols withN = 1, that is the space of semi-infinite sequencesS = (S0, S1, S2, . . .).
Then consider the functionfc : 4×4→ 4×4 given byfc = σ × ζ . Whereσ is the usual
shift function andζ is a right inverse of the shift function defined as follows:

ζ(S0, S1, S2, . . .) = (0, S0, S1, S2, . . .).

It is easy to check thatζ is a continuous function, and of course so is the shift: sofc is
continuous. The set4× {0} is an asymptotically stable transitive set, on which the restriction
of fc is the shift mapσ .

As another example, consider the space� with N = 1. It can be split into the disjoint
union of two Cantor sets� = 30 ∪ 31. Where30 is the set of sequences such thatS0 = 0
and an analogous fashion for31. Take the continuous functionfπ = π ◦ σ , whereσ is the
shift map andπ projects� in 30 such that:

π(S0, S1, S2, . . .) = (0, S1, S2, . . .).

Then the action offπ is given by,

fπ(S0, S1, S2, . . .) = (0, S2, S3, . . .).

It is easy to check that30 is a chaotic attractor offπ .

(iii) Chaotic maps in� induced through chaotic maps in Cantor subsets ofRN .

We will consider a homeomorphism which relates a Cantor setχ ⊂ RN to the space�
and allows one to construct chaotic maps in� from chaotic maps inχ through topological
conjugation. Letχ ⊂ RN be the Cantor set that results from taking the Cartesian product of
N Cantor setsχi ;

χ =
N⊗
i=1

χi
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Figure 1. Construction of the Cantor sets4i , i = 1, . . . , N by suppressing from [0, 1] the open
middle 1/ai part, 1< ai <∞. The remaining 2n intervals at thenth step of the construction are
of lengthln = 1

2n (1− 1
ai
)n.

where theith componentχi is constructed by suppressing from the interval [0, 1] the open
middle 1/ai part, i = 1, . . . , N , ai > 1, and repeating this procedure iteratively with the
sub-intervals, see figure 1. Now, we defineφ : � −→ χ by:

φi(S) =
∞∑
n=1

(ln−1− ln)Si(n− 1) (7)

where

ln = 1

2n

(
1− 1

ai

)n
(8)

is the length of each of the remaining 2n intervals at thenth step of the construction ofχi . If
� is endowed with the metric (3) andχ ⊂ RN with the standard Euclidean metric, is easy to
show thatφ is a homeomorphism.

Now, if we have a mapf : RN −→ RN which is chaotic inχ we can construct a map
F : � −→ � which is chaotic in�, and is defined through the commutation of the diagram

χ
f−→ χ

φ ↑ ↑ φ

�
F−→ �

. (9)

This leads to an interesting practical application of the homeomorphismφ, to realize computer
simulations of chaotic systems on Cantor sets. If, for example, one iterates the logistic map
f (x) = µx(1 − x) for µ > 4 with a floating-point variable, the truncation errors nudge
the trajectory away from the Cantor set and eventuallyx → −∞. The homeomorphismφ
suggests a natural solution to this, which is to iterate the truncated binary states rather than the
floating-point variable. To iterate the dynamics, one computesxi = φi(S) ∀i = 1, . . . , N by
assuming that the truncated bits are all equal to zero, then appliesf to obtainx ′ = f (x). Since
x ′ generally doesnotbelong to the Cantor set (because of truncation errors), in the process of
constructingS ′ = φ−1(x ′), at somen one will find that this point does not belong to either the
interval corresponding toSi(n) = 0 or toSi(n) = 1. This truncation error can be corrected by
moving to the extremity of the interval which lies closest tox ′i . In this way, truncation errors
are not allowed to draw the trajectory away from the Cantor setχ ⊂ RN .
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(iv) Binary systems with memory.

Now we are going to define a map0 : � −→ � which is very useful to analyse binary
systems with causal deterministic dynamics onN bits, such as neural networks, cellular
automata, and neural networks with memory [1–4, 17]. Let

γi : � −→ {0, 1} (10)

i = 1, . . . , N , be a set of continuous or discontinuous functions.0 : � −→ � is then defined
by:

0i(S) = (γi(S), Si(0), Si(1), . . .)
or in a short hand notation

0(S) = (γ (S), S). (11)

Such maps have the following properties.

Property 3. The shift map (5) is a left inverse of0 since from (11)σ ◦ 0(S) = S. If � has
an attracting set3 ⊂ �, thenσ is also a right inverse in the restriction of0 to 3, so that,
0|−1
3 = σ .

Proof. ∀S ∈ 3∃S ′ ∈ 3 such that0(S ′) = S. Since

0(S ′) = (γ (S ′), S ′) = S
and

S = (S(0), S1)

whereS1 ≡ (S(1),S(2), . . .), one sees thatS ′ = S1. Thus,

0 ◦ σ(S) = 0(S1) = 0(S ′) = S.
�

Property 4. 0 has an attracting set3 contained properly in�.

Proof. GivenS there are 2N statesS ′ = (S′(0), S) of which only one,0(S) = (γ (S), S),
belongs to0(�). Therefore the set

3 ≡
⋂
n>0

0n(�)

is a proper subset of�. �

Property 5. If 0 is continuous, then it is not sensitive to initial conditions.

Proof. 0 is a continuous map on a compact set, so it is uniformly continuous. Therefore
there exists aδ > 0 such that for anyS ∈ �, d(S ′, S) < δ ⇒ γ (S) = γ (S ′) and
henced(0(S), 0(S ′)) < δ/2, where the distance function is given by (3). Applying the
same argument to each iterate0k(S) shows thatd(0k(S), 0k(S ′)) < δ/2k, which contradicts
sensitivity to initial conditions. �

Property 6. If 0 is continuous, then the attractor3 is finite.
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Proof. From property 4 we know that3 exists. The property then follows from property 5
above. Indeed, if0 is not sensitive to initial conditions, then there is an > 0 such that∀S ∈ �

lim
k→∞

d(0k(S)− 0k(S ′)) = 0

∀S ′ ∈ Nn(S). The setA ⊂ � defined byS ∈ A iff ∀m > n, S(m) = 0, has a finite number
of elements, namely 2N×n. The whole space� is the union of then-neighbourhoods of each
element ofA, and as we just showed the map0 is contracting in each such neighbourhood,
so the number of points in the attractor cannot be greater than the number of elements ofA,
namely 2N×n. �

Neural networks and cellular automata are binary dynamical systems in which the values
of the state variablesSi , i = 1, . . . , N , at timet depend on the state variables at timet − 1.
These systems are described by a function0 such that the functionsγi depend only on the
componentsS(0). Therefore, all pointsS ′ ∈ Nn(S) for n > 0 have the same evolution
so that these systems are not sensitive to initial conditions. One can recover a very rough
approximation of sensitive dependence on initial conditions by considering the growth of
Hamming distancewith time, rather than the metric (3) of symbolic dynamics. However, one
cannot describe the behaviour of these systems to be approximately chaotic: they are well
known to have attractors that consist of a collection of periodic limit-cycles, and as we will
see in section 4, the points of these limit-cycles are scattered over configuration space without
any effective lower-dimensional structure. In particular, given any one point on the attractor
there is usually no other point ‘nearby’, even in the weak sense of the Hamming distance, that
also belongs to the attractor. This fact makes most practical uses of chaos theory in prediction
and control inapplicable.

(v) A compact topology for neural networks and cellular automata.

Since neural networks and cellular automata in general are systems in which all the
variables have the same type of interactions, it is natural to consider the Hamming distance
as the metric (it is in fact the most widely used metric in the literature, see for instance [1–4]
and the references therein). We have already seen that the topological structure which the
Hamming distance confers to the phase space does not conduce to chaotic behaviour in the
sense that we understand it even if we extend the phase space to�. However, not all the neural
network and cellular automata models confer the same type of interactions to neurons, so the
use of the Hamming distance for the metric is not so compelling. The use of a different metric
can lead to a completely different topology. The resulting system will in general display a
very different dynamical behaviour. For example the mapxn+1 = αxn produces quite different
dynamical behaviours forxn ∈ R andxn ∈ S1.

So, let us consider systems which evolve according to the rule

Ri(t + 1) = fi(R(t)) (12)

Ri = 0, 1; i = 1, . . . ,M and take for the metric

d(S, S ′) =
M∑
n=0

1

2n
dn(S − S ′). (13)

These systems include neural networks and cellular automata as particular examples, but where
the weight of the different neurons drops off as 2−n. The metric (13) remains well defined in
the limitM →∞ and once again we obtain the space�. In fact (12) and (13) withM →∞
are equivalent to (3) and (4) withN = 1 andS1(n) = Rn. As we will see in the next section
these systems can have a correlation dimension which is less than or equal to one.
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3. Correlation function

In the theory of dynamical systems inRN one is interested in calculating the fractal dimension
of the attractor in which the system evolves. To do so, following the method of Grassberger
and Procaccia [18] one defines the correlation functionC(ρ) as the average of the number of
neighboursSt , St ′ , with St = F t(S), which have a distance smaller thanρ. Since inRN the
volume of a sphere of radiusρ grows likeρN , one identifies the correlation dimensionDa of
the attractor with the growth rate inC(ρ) ∼ ρDa . This leads to the definition of the correlation
dimension as

Da = lim
ρ,ρ ′→0

(
log(C(ρ))− log(C(ρ ′))

log(ρ)− log(ρ ′)

)
. (14)

In order to have an analogous methodology to compute correlation dimensions in�, it is
necessary to know how many statesS ′ are within a distance less thanρ from a given pointS.
Since� is homogeneous we can takeS = 0. To do the calculation we make� into a finite
space by truncating the semi-infinite sequence to onlyT slices, and take the limitT →∞ in
the end, that is:

C(ρ) = lim
T→∞

1

2NT
∑
{S}
2(ρ − d(S, 0)) (15)

where the distance is given by (3). Expressing2(x) in terms of its Fourier transform
ω(k) = πδ(k)− i

k
we have

C(ρ) = lim
T→∞

1

2NT
1

2π

∫ +∞

−∞
dk ω(k)eikρ

∑
{S}

e−ikd(S,0).

The sum over{S} can be evaluated easily obtaining

∑
{S}

e−ikd(S,0) = 2NT e−ikN

( T∏
n=0

cos
k

2n+1

)N
.

Using the identity sink/k =∏∞n=0 cos k
2n+1 we obtain the integral

C(ρ) = 1

2π

∫ +∞

−∞
dk ω(k)

(
sink

k

)N
eik(ρ−N)

which may be evaluated by standard complex variable methods, to obtain the final result for
the correlation function in�,

C(ρ) = 1

2NN !

[ρ/2]∑
k=0

(−1)k
(
N

k

)
(ρ − 2k)N . (16)

So we see that the scaling in� is not a power law as inRN . However, in the definition of the
attractor dimension one is interested in calculatingC(ρ) for ρ → 0. Forρ 6 2 equation (16)
has the form

C(ρ) = 1

2NN !
ρN. (17)

Therefore, the same techniques applied inRN can be used in�. In particular an effective
‘attractor dimension’ will be given by (14).
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4. Numerical examples

We have examined numerically several of the binary systems which have been considered in
the literature, including the randomk = 4 cellular automata [7], and some neural network
models such as those studied by Crisantiet al in the context of Shannon’s entropy [2].

Random cellular automata of rankk consist ofN binary variablesSi = 0, 1 with the
following dynamical rule. For each binary variable one chooses at random a Boolean function
fi : Zk2 −→ Z2 from k binary variables into one, among the 22k possible functions. Then, for
eachi = 1, . . . , N , a set ofk numbers{i1, i2, . . . , ik} is selected at random from{1, . . . , N}.
These numbers are interpreted as labels for thek inputs of the Boolean function at thati. The
evolution of the system in time is given by applying the Boolean rules synchronously at theN

variables:

Si(t + 1) = fi(Si1(t), . . . , Sik (t)). (18)

Fork > 4 the system has very long cycles with periods of order eN and present the phenomenon
of damage spreading which is the standard way in which a first ‘Lyapunov exponent’ is assigned
to such systems.

In [2] Crisantiet al studied a binary neural network described by variablesSi = ±1. The
variables evolve in parallel according to the rule

Si(t + 1) = sgn

( N∑
j=1

JijSj (t)

)
(19)

where

Jij = J Sij + kJAij

is the synaptic matrix, withJ Sji = J Sij andJAji = −JAij being random independent Gaussian
variables with mean zero and varianceσ 2 = 1/(N − 1)(1 +k). The parameterk measures the
amount of asymmetry of the synapses. Fork = 0 the matrix is symmetric and the network has
fixed points as attractors. Fork > 0 it is asymmetric and the network can have limit cycles as
attractors. Whenk > kc = 0.5, long limit cycles are obtained, with period of order eN but with
fluctuations of the same order. In [2] the Shannon entropy has been calculated numerically in
the rangekc < k < 0.9 and the scaling was found to be given by

h ∼ (k − kc)1/2.
In the limit k → 1, h attains a value which is very close to the maximum value log(2),
characteristic of a random process. All of this indicates a high degree of complexity.

However, for both of the dynamical systems (18) and (19), the dynamics is not
topologically transitive on the limit set of all periodic orbits: as we will see below, points on this
set are isolated in Hamming distance, so most points do not even have any ‘near-neighbours’
that might attempt to satisfy the conditions in the definition of topological transitivity.

The number of returns to within a Hamming distancedH of an initial point on one of the
long periodic orbits is given in figures 2 and 3 for the cellular automata (18) withk = 4 and the
neural network (19) withk = 1.2. We have also graphed the best-fitting Gaussian curve for
comparison. The first obvious result is that there are no returns withdH < 50 in an automata
with N = 200, in 5× 106 iterations of the dynamical map. The neural network was run with
N = 100 neurons for 5× 105 iterations, and again no returns were found withdH < N

4 . Both
the value of the nearest return and the fit to a Gaussian are consistent with a random process
which produces patterns all over the configuration space without any restriction to a possible
‘attracting subspace’. This indicates a very high degree of algorithmic complexity [8] in the
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Figure 2. The number of times ak = 4 random cellular automata withN = 200 returns to a
Hamming distancedH of a point half-way along the trajectory is represented as a function ofdH
(full circles). The best-fitting Gaussian is also given for comparison (open circles).

Figure 3. The number of returns to Hamming distancedH is shown, for an asymmetric neural
network withN = 100 (full circles). The best-fitting Gaussian is also given for comparison (open
circles).

time-series, which reflects a lack of predictability, like Shannon entropy which is a statistical
measure of disorder.

Without anything analogous to a transitive ‘attractor’, none of the practical applications of
chaos theory can carry through for large values ofN . The phase space reconstruction methods
and other versions of the ‘method of analogues’ [19] fail becauseone finds no good analogue
in any finite data set, for largeN . The lack of close returns in binary systems can often be
related to the failure to find an attractor on which the dynamics is topologically transitive.

Another example, more in the spirit of the maps0 is an asymmetric neural network with
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state-dependent synapses originally designed to recognize sequences of patterns, and described
in [4]. As shown there, this system has a transition from a stable sequence reproduction to
a disordered behaviour. We shall modify the dynamical rule by introducing a memory in an
analogous way as has been done in [17], as follows:

Si(t + 1) = sgn

( T−1∑
n=0

1

2n

N∑
j=1

J
(n)
ij Sj (t − n)

)
(20)

where the synapses is given by

J
(n)
ij =

1

N

p∑
µ=1

ξ
µ+n+1
i ξ

µ

j (21)

and

Sµ = 1

N

N∑
i=1

Siξ
µ

i

is the correlation of the state of the network with the patternξµ. The patternsξµ = ±1 with
µ = 1, . . . , p + T are random independent, equiprobable variables, andp is a parameter of
the model. The reader not familiar with the notation of Hopfield-type neural networks may
refer to [4].

It is easy to show that the argument of the sign function referred to above as functionγi ,
does in fact vanish in� whenT → ∞. So the map0 : � → � is discontinuous, and one
cannot immediately rule out the possibility of non-periodic orbits [20]. In practice, however,
one always uses a finite memory in computer simulations, so the continuity is recovered and
it is the sensitivity to initial conditions which is not valid.

In applications it is often the case that two points can be considered to be distinguishable
only if their mutual distance is greater than a small ‘cut-off’ valueλ. If λ > 1/2T one can
then claim that the map is ‘effectively’ sensitive to initial conditions, which suggests that the
ensuing dynamics may be correctly described as being ‘approximately chaotic’. This is best
analysed by computer simulation.

We have run this system withT = 30,N = 49 neurons andp = 19 and find evidence
for a non-trivial attractor with a low effective dimension. Unlike in the examples above
there are substantially more near-returns than for a random sequence, as shown in figure 4,
and the correlation functionC(ρ) produces an effective dimensionDa ≈ 2 in the range
0.002< ρ < 0.02 (see figure 5).

For both the neural network (19) and thek = 4 cellular automata (18), we observe a
very different behaviour, as expected. The correlation graphC(ρ) coincides for allρ, with
(16), within an accuracy of the 98% which means thatDa ≈ N . This means that the orbits
are scattered in the whole space� as one would expect from the fact that the distribution of
returns to Hamming distancedH is approximately Gaussian.

5. Conclusion

From an initial ansatz, to replace the usual idealization of physical states as ‘points’ on a
differentiable manifold by another idealization as infinite ‘binary states’, we proceeded to
define a topology which makes the truncation to finite states a valid approximation, in the
same sense that the usual topology onRN allows one to approximate a real coordinate by a
finite string of digits or bits. This lead us to a space� which is homeomorphic to the space of
symbolic dynamics.
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Figure 4. The number of returns to Hamming distancedH is given for a neural network model with
memory, withN = 49. Unlike the previous examples, which correspond to dynamical systems
without memory, we find many analogues. There is one return withdH = 0; the system did not
fall on a limit-cycle at that point because the dynamics also considers binary words further back in
time.

Figure 5. The correlation graphN(ρ) gives the effective attractor dimension for the neural network
with memory,Da ≈ 2 in the range 0.002< ρ < 0.02. The distanceρ is given by equation (3).

Continuous or discontinuous dynamical maps on the space of symbolic states can lead to
attracting sets within�, in which case an attractor is defined in the usual way. The dynamical
map is said to be chaotic on the attractor if it is sensitive to initial conditions and topologically
transitive.

Finite systems such as neural networks and cellular automata without memory that depend
only on the previous time-step and for which the different bits have comparable importance
do not provide good approximations of chaos when the Hamming distance is used as the
metric. The absence of even an approximate manifestation of chaos has important practical
consequences—for example we found that prediction models based on a search for analogous
examples in a data set are not applicable because no good analogues are found in any reasonable
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amount of data.
The practical value of the analysis of dynamical maps on the space� is probably limited

to special complex systems problems where an extended binary description is more natural
than a continuum description. Discrete spacetime formulations of quantum gravity offer
another potentially rewarding area of applicability. There, the evidence for discrete small-scale
structure, combined with the perceived need of a spacetime ‘sum over histories’ interpretation,
leads to a formalism where one defines ‘states’ to be truncated discrete spacetime histories.
An interesting example is the causal set formalism, where a partially ordered set or Poset
is conjectured to constitute the minimal required structure to formulate a theory of quantum
gravity.

A priority in the continuation of this work is to further elucidate the chaotic properties of
neural networks and cellular automata when a compact metric compatible with the topology
of � is given.
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