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Abstract. We propose a theory of deterministic chaos for discrete systems, based on their
representations in binary state spa@esiomeomorphic to the space of symbolic dynamics. This
formalism is applied to neural networks and cellular automata; it is found that such systems cannot
be viewed as chaotic when one uses the Hamming distance as the metric for the space. On the
other hand, neural networks with memory can in principle provide examples of discrete chaos;
numerical simulations show that the orbits on the attractor present topological transitivity and a
dimensional phase space reduction. We compute this by extending the methodology of Grassberger
and Procacciat®. As anexample, we consider an asymmetric neural network model with memory
which has an attractor of dimensi@h, = 2 for N = 49.

1. Introduction

Recently, discrete systems with a complex dynamical behaviour have received a great deal
of attention, for their relevance in fields ranging from theoretical biology to quantum gravity.
For example, asymmetric neural networks [1-4] can have a complicated dynamical behaviour
which is reminiscent of ‘chaos’. Also cellular automata display [5] bifurcations between
several possible dynamical regimes [6], the most disordered of which has been described as
‘chaotic’ [7]. Yetitis unclear precisely how this type of dynamics in discrete spaces is related
to deterministic chaos in a Euclidean phase space.

In this paper we will examine how the definitions of deterministic chaos can be translated
to the context of discrete state spaces. This will lead us to a formalism which we call ‘discrete
chaos’, that allows one to decide whether or not the complex dynamics of some finite systems
can be viewed as chaotic in the limit in which the system grows to infinity.

Unfortunately, for most finite systems there is no convenient quasi-representation in terms
of real variables. For example, in neural networks and cellular automata the relevant distance
is the Hamming distance; this induces a discrete topology on the space of states that is distinct
from the usual topology dk". There are different points of view on this problem, ranging from
the fundamentalist, which concludes that a finite system cannot be viewed as approximately
chaotic, to the liberal, which reduces the definition of chaos to the exponential growth of the
limit-cycle period with the size of the system.
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Our feeling is that chaos should not be limited to real variables, as these are idealizations
of a reality which could be viewed equally well in terms of finite state spaces. Indeed, the
fact that most real numbers have infinite algorithmic information [8] is not really satisfactory
from a physicist’s point of view. Yet some form of idealization is necessary to define chaos
rigorously.

Our purpose in this article is to propose a different idealization, inspired from symbolic
dynamics [9-13]. We will assume that one is given a representation of the system through
a sequence al-bit vectors. For example, one might consider the case where the different
binary words carry information about the system at increasing temporal depths, e.g. by giving
the N-bit description of the system at every past tick of a clock. In generakttiteof the
system will be given by

S=1{500),S@),....,8@n),...}

whereS(n) is a vector with component$(n) = 0,1, (¢ = 1,..., N). The set of such binary
states will be denoted bg.

The approximation which makes this concept practical, akin to the 128-bit version of
floating-point variables, is the truncation of the symbolic states to the:fisgirds. This is a
good approximation if the difference between states which coincide in the fustds belongs
to a small neighbourhood of the origin. We will formalize this demand through the assignment
of a base for the topology af, related to the cylinders of symbolic dynamics [10, 13].

With this topology, the spac@ is homeomorphic to the one-sided shift space of symbolic
dynamics. Our main contribution is to provide a definition of chaos for general dynamical maps
in Q. In symbolic dynamics one usually considers the shift maphich consists of erasing the
word S (0) from the semi-infinite sequence and shifting the other sliceSy — S — 1)

[10]. This example satisfies our definition of discrete chaos. But we stress that this is only one
of many possible chaotic maps$h

We will consider functions which are continuous or discontinuous. Neural networks
and cellular automata will turn out to be examples of discontinuous functions. For general
discontinuous functions very little is known, basically due to the fact that analytically there
is very little that one can prove. However, numerically one can distinguish several types of
dynamical behaviour. IRY the Grassberger and Procaccia method is widely used to estimate
the fractal dimension of attractors. We will extend its application to the sfaiceorder to
characterize different chaotic behaviours and define an effective attractor dimension.

One important class of maps which we will consider in this paper corresponds to the case
when the binary state represents the system at every past tick of a clock, as explained above. To
define such a map one must provide a function which allows one to compute the ne%®prd
from the stateS. The left inverse of any such map is the shift mapf symbolic dynamics.
Examples include neural network models and cellular automata. Note that in this case not all
points of 2 represent possible histories; instegdplays the role of an embedding space for
the attractor.

The results of this paper can be generalized without difficulty to other alphabets besides
the binary one, and also to the case where the s@aisethe two-sided shift space [11, 12],
where a state is given by a sequence

{...8(=1), 8(0), S(D), ...}.

In this case our construction reduces to the invertible shift map #ienis taken to be
the binary description of the system but once again we stress that this is only one of several
possible dynamical maps : Q — Q.

The organization of this paper is as follows. ‘Discrete chaos’ will be defined in section 2
and different types of dynamical maps@nare discussed. In section 3 we will consider the
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correlation functionC (p) and the Grassberger—Procaccia method to compute the correlation
dimension of the attractor. Numerical examples will be considered in section 4. In section 5
we give the conclusion.

2. Chaotic dynamics of binary systems

Binary systems, like cellular automata and neural networks, are described, in general, by a
set of N binary variablesS;,i = 1, ..., N, or in shortS, that evolve according to dynamical
rules. The natural metric for these systems is the Hamming distance

N
dy(S—58) = Z 1S; — /1.
i=1

The spacd S} has 2’ possible states and so the topology constructed #gnis discrete.
Generally one is interested in studying these dynamical systems in theMimit oo since
thatis where interesting statistical properties appear, such as phase transitions, and it is possible
to use powerful techniques like mean field theory [1-4]. Furthermore numerical simulations
which need to be done for finite, but lar@gg are understood as approximations of a system
with infinite variables, much in the same way as floating point variables in computers are finite
approximations of real numbers which generally have an infinite number of digits. Nevertheless
for N — oo, dy is nolonger a distance and the topology is ill defined in that limit. That makes
our understanding of binary systems quite different from that of dynamical systéAisirin
differentiable manifolds where one works with the usual topology of the real numbers. Here
we will overcome this situation by extending the phase sp&¢do have an infinite number
of states while preserving the equal status that the Hamming distance confers to each of the
variables. Thatis to say, all the variablggive the same contribution to the distance for any

Let us consider the Cartesian product of infinite copiegSjfand call this spac. We
denote the elements 6f by

S =(S(0), S(1), S(2),...). (1)
We make2 a topological space by introducing the following base:
NL(S) ={S" € Q|5 (m) = S(m),Vm < n} 2
withn =1, 2, .... These base sets are closely related to the cylinders in one-sided shift spaces

and$ is homeomorphic to the space of symbols of the symbolic dynamics Wityghbols
[10, 11]. It follows that® is a cantor set. In symbolic dynamics the topology is usually derived
from the metric

21
d(s, 8=y oody(S =5 €)
n=0
where
N
dy(S = §) =Y 1Si(n) — S;()]| )
i=1

is the Hamming distance of tleth copy of{.S}. One can check that8(m) = S'(m) Vm < n
thend(S, §') < g’—f} so that (2) and (3) define the same topology.

Here and in the following our purpose is to study dynamical systerfisganerated by a
function F : Q@ — Q. This function may be continuous or discontinuous, unless explicitly
stated below. Allowing discontinuous functions in principle opens the door to a richer variety
of systems, which include neural networks and cellular automata.

We begin by generalizing in a natural way the definitions of chaos in subsit% (fee
for example [11]) tc2.



178 H Waelbroeck and F Zertuche

Definition 1. F hassensitive dependence on initial conditiamsA c Qifdn e NovVS e A
andVvA;,(5)3S" € N, (S) N A andk e N such thatF (S’) ¢ N, (F¥(S)).

Definition 2. Let A C Q be a closed invariant setf' : 2 —> Q is topologically transitive
onA cC Qifforanyopensetd/,V Cc AdneZ> F"(U)NV #@. Inthe last expression,
if F is non-invertible we understanii=*(U) with k > 0, as the set of all point§ € © such

that F¥(S) e U.

Definition 3. Let. A C Q2 be a compact setF : A — A is chaoticon A if F has sensitive
dependence on initial conditions and is topologically transitiveon

Definition 4. A closed subset C Q is called atrapping regionf F(M) C M.
Property 1. If F is a continuous function if, F" (M) is compact and closed: € N.

Proof. Since every closed subset of a compact set is compact, it followsvthiastcompact
and sinceF is continuousF™ (M) is compact. Sinc€ is Hausdorff every compact subset of
it is closed, saF" (M) is closed [14]. O

Definition 5. The mapF : @ — Q has anattractorif it admits an asymptotically stable
transitive set, i.e. if there exists a trapping regig such that
A= ﬂ F"(M)
n>0

and F is topologically transitive om.

Note carefully that the trapping region is defined in faespace while in the theory of
dynamical systems in manifolds, it is defined in the manifold [10-13, 15]. This makes most
theorems (as those shown in [15]) concerned with Cantor sets considered as attractors in
manifolds to be not applicable.

Property 2. If F is a continuous function i, A is compact and closed.

Proof. From property 1 ifF is continuousA is an intersection of closed sets, so it is closed.
Since every closed subset of a compact sggacecompact, it follows that\ is compact. O

Definition 6. A is called achaotic attractoif F is chaotic onA.
Lemma. Let F be a continuous function if?, if A is a chaotic attractor then it is perfect.

Proof. By property 2,A is closed. It remains to prove that every pointins an accumulation
point of A. By contradiction, letSy € A be an isolated point, then there exist&s N >
N, (So) N A = {So}. Then, by topological transitivith has an isolated orbit (the orbit 6§)
which implies that it is not sensitive to initial conditions an O

Theorem. If F is a continuous function i€, and A is a chaotic attractor then it is a Cantor
set.

Proof. The theorem follows directly from property 2, the lemma and the fact that a subset of
a totally disconnected set is also totally disconnected. a

In the following we will consider some examples of dynamical functignsQ — <.
The firstone is the one-side shift mapf symbolic dynamics which we introduce to familiarize
the reader with the notation.
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(i) The one-sided shift magp.
The continuous magp defined by
o (S(0), S(D),...) = (S(1), S(2),...) (5)

is chaotic in2 [10]. Note that is non-invertible and its action loses the information carried by
the binary states(0). The meaning and usefulness of this map is quite clear in the context of
symbolic dynamics when the Conley—Moser conditions are satisfied [16]. There one studies,
in general, a non-invertible functiofi : £ — E whereZ is a Cantor set embeddedi’.

The setZ is divided in 2¥ sectorsl, o = 0,1,...,2V. Then it is possible to establish a
topological conjugation betweefiando through a homeomorphisih, so that the following
diagram commutes [11]

v \L \L‘(/I' (6)

Moreover, letS = v (x), thenS(n) is the binary decomposition of the labe] such that
fr(x) € Iy.

(ii) Chaotic maps with non-trivial attractors in.

The shift map can be modified to create maps which are homeomorphic to the shift map
on an asymptotically stable transitive subset of the space of symbols. We introduce two very
simple examples.

Take the space of symbdiswith N = 2, homeomorphic t& x E whereE is the space
of symbols withN = 1, that is the space of semi-infinite sequenses (Sg, S1, S, ...).

Then consider the functiofi. : E x E — E x E given by f. = o x ¢. Whereo is the usual
shift function and; is a right inverse of the shift function defined as follows:

¢(So, 81, 82,...) = (0, So, S1, S2, .. ).

It is easy to check that is a continuous function, and of course so is the shift: fs@s
continuous. The se& x {0} is an asymptotically stable transitive set, on which the restriction
of f. is the shift map .

As another example, consider the sp&®ith N = 1. It can be split into the disjoint
union of two Cantor set® = Ag U A;. WhereAy is the set of sequences such tgt= 0
and an analogous fashion far. Take the continuous functiofi, = 7 o o, whereo is the
shift map andr projects2 in Ag such that:

7(So, 81, S2,...) = (0, 81, So, .. ).
Then the action off; is given by,
Sz (S0, S1, S2,...) = (0, S2, S3, ...).
It is easy to check thak is a chaotic attractor of;; .
(iii) Chaotic maps inQ induced through chaotic maps in Cantor subsef®’of

We will consider a homeomorphism which relates a Cantoyset RY to the space
and allows one to construct chaotic mapsarfrom chaotic maps iry through topological
conjugation. Lety ¢ R" be the Cantor set that results from taking the Cartesian product of
N Cantor setg;;

N
X=®Xi

i=1
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Iy =1
n=0
11 11
1 1
a
| | | |
2 2 2 2
2
| | | |
3 3 3 3 3 3 3 3
3 —_— — — — i e —_— —

Figure 1. Construction of the Cantor se&,i =1,..., N by suppressing from [Q] the open
middle 1/a; part, 1< a; < co. The remaining 2 intervals at theith step of the construction are
of lengthi, = (1 — %,»)”-

where theith componenty; is constructed by suppressing from the interval [0, 1] the open
middle Va; part,i = 1,..., N, a; > 1, and repeating this procedure iteratively with the
sub-intervals, see figure 1. Now, we define @ — x by:

$i(S) =Y (1 —1)Si(n — 1) (7
n=1
where
1 1y
L= 2(1-2) ®

is the length of each of the remainingj dtervals at theith step of the construction ¢f. If
Q is endowed with the metric (3) and ¢ RY with the standard Euclidean metric, is easy to
show thatp is a homeomorphism.

Now, if we have a magf : R¥ — RY which is chaotic iny we can construct a map
F : Q@ —> Q which is chaotic irf2, and is defined through the commutation of the diagram

f
X—X
ot to- ©)

Q-5 @
This leads to an interesting practical application of the homeomorppjsorealize computer
simulations of chaotic systems on Cantor sets. If, for example, one iterates the logistic map
f(x) = ux(1 —x) for u > 4 with a floating-point variable, the truncation errors nudge
the trajectory away from the Cantor set and eventuallyy —oco. The homeomorphisrp
suggests a natural solution to this, which is to iterate the truncated binary states rather than the
floating-point variable. To iterate the dynamics, one computes ¢,(S) Vi = 1,..., N by
assuming that the truncated bits are all equal to zero, then agpiiesbtaine’ = f(x). Since
x" generally doesotbelong to the Cantor set (because of truncation errors), in the process of
constructings’ = ¢~1(x’), at some: one will find that this point does not belong to either the
interval corresponding t§; (n) = 0 or toS; (n) = 1. This truncation error can be corrected by
moving to the extremity of the interval which lies closeskfo In this way, truncation errors
are not allowed to draw the trajectory away from the CantoysetR" .
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(iv) Binary systems with memory.

Now we are going to define a mdp: Q — Q which is very useful to analyse binary
systems with causal deterministic dynamics @nbits, such as neural networks, cellular
automata, and neural networks with memory [1-4, 17]. Let

yi @ — {0, 1) (10)

i=1,..., N, beasetof continuous or discontinuous functidns.Q —  is then defined
by:

[i(S) = (i (8), Si(0), Si (D), ...)
or in a short hand notation

'S = (S, 9). (11)
Such maps have the following properties.
Property 3. The shift map (5) is a left inverse bfsince from (11p o I'(S) = S. If Q has
an attracting setA C €, theno is also a right inverse in the restriction &f to A, so that,
F|X1 =o0.
Proof. VS € A3S’ € A such thaf'(§’) = S. Since

L) =), sH=S
and

S =(5(0), $1)
whereS; = (S(1), S(2), ...), one sees that' = §;. Thus,

Foo(S)=T(S) =T(S)=S5S.

Property 4. T" has an attracting se contained properly irf2.

Proof. Given S there are ¥ statesS’ = (S'(0), ) of which only one,I'(S) = (¥(5), S),
belongs td"(2). Therefore the set

A= ﬂ ()
n=>0

is a proper subset «¢t. O
Property 5. If T is continuous, then it is not sensitive to initial conditions.

Proof. T is a continuous map on a compact set, so it is uniformly continuous. Therefore
there exists & > 0 such that for any§ € @, d(5,S) < § = y(S) = y(§) and
henced(I'(S), I'(S")) < §/2, where the distance function is given by (3). Applying the
same argument to each iterdt&(S) shows that/(I'*(S), T*(S")) < §/2, which contradicts
sensitivity to initial conditions. |

Property 6. If I" is continuous, then the attractax is finite.
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Proof. From property 4 we know thak exists. The property then follows from property 5
above. Indeed, if is not sensitive to initial conditions, then there is & 0 such tha¥s € Q

klim d(Ir*s) —r&s) =0

VS € N,(S). The setA C Q defined byS € A iff Vm > n, S(m) = 0, has a finite number

of elements, namely’2*. The whole spac& is the union of the:-neighbourhoods of each
element ofA, and as we just showed the mBgs contracting in each such neighbourhood,
so the number of points in the attractor cannot be greater than the number of eleménts of
namely 2'*", O

Neural networks and cellular automata are binary dynamical systems in which the values
of the state variableS;, i = 1, ..., N, at timer depend on the state variables at time 1.
These systems are described by a funciiosuch that the functiong; depend only on the
componentsS(0). Therefore, all pointss’ € N,(S) for n > 0 have the same evolution
so that these systems are not sensitive to initial conditions. One can recover a very rough
approximation of sensitive dependence on initial conditions by considering the growth of
Hamming distancevith time, rather than the metric (3) of symbolic dynamics. However, one
cannot describe the behaviour of these systems to be approximately chaotic: they are well
known to have attractors that consist of a collection of periodic limit-cycles, and as we will
see in section 4, the points of these limit-cycles are scattered over configuration space without
any effective lower-dimensional structure. In particular, given any one point on the attractor
there is usually no other point ‘nearby’, even in the weak sense of the Hamming distance, that
also belongs to the attractor. This fact makes most practical uses of chaos theory in prediction
and control inapplicable.

(v) A compact topology for neural networks and cellular automata.

Since neural networks and cellular automata in general are systems in which all the
variables have the same type of interactions, it is natural to consider the Hamming distance
as the metric (it is in fact the most widely used metric in the literature, see for instance [1-4]
and the references therein). We have already seen that the topological structure which the
Hamming distance confers to the phase space does not conduce to chaotic behaviour in the
sense that we understand it even if we extend the phase spacéitmwvever, not all the neural
network and cellular automata models confer the same type of interactions to neurons, so the
use of the Hamming distance for the metric is hot so compelling. The use of a different metric
can lead to a completely different topology. The resulting system will in general display a
very different dynamical behaviour. For example the map = ax, produces quite different
dynamical behaviours for, € R andx, € S*.

So, let us consider systems which evolve according to the rule

Ri(t +1) = fi(R()) (12)
R =0,1;i =1,..., M and take for the metric

M
s, sh=>Y_ 2—1ndn(s - 5. (13)
n=0

These systems include neural networks and cellular automata as particular examples, but where
the weight of the different neurons drops off a3 2The metric (13) remains well defined in

the limit M — oo and once again we obtain the sp&zeln fact (12) and (13) with — oo

are equivalent to (3) and (4) with = 1 andS1(n) = R,. As we will see in the next section

these systems can have a correlation dimension which is less than or equal to one.
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3. Correlation function

In the theory of dynamical systemsii’ one is interested in calculating the fractal dimension

of the attractor in which the system evolves. To do so, following the method of Grassberger
and Procaccia [18] one defines the correlation funafige) as the average of the number of
neighbourss,, S, with S, = F’(S), which have a distance smaller than Since inR" the
volume of a sphere of radiysgrows likep?, one identifies the correlation dimensidy of

the attractor with the growth rate (o) ~ pP<. This leads to the definition of the correlation
dimension as

(14)

D — i (Iog(C(p)) — |09(C(;0/))> '
“pp=0\ log(p) —log(p)
In order to have an analogous methodology to compute correlation dimensiéhsitins
necessary to know how many stasare within a distance less tharfrom a given points.
Sincef2 is homogeneous we can take= 0. To do the calculation we make into a finite
space by truncating the semi-infinite sequence to @ngjices, and take the limif — oo in
the end, that is:

, 1
Clp) = Jim —r %}j ®(p —d(S,0)) (15)

where the distance is given by (3). Expressifgx) in terms of its Fourier transform
w(k) = w8(k) — ; we have
+00

11 . .
C(p) = lim —— dk w (k)e** ) " g kd(S.0)
(p) = Jim Siroe | dko®) %}j

The sum ovefS} can be evaluated easily obtaining

T k N
—ikd(S,00 __ ANT —ikN
E € =2""e <| |C°S_2n+1> .
n=0

{S}

Using the identity sit/k =[] -, cos% we obtain the integral

1 [f* sink\" io-m

[e¢]

which may be evaluated by standard complex variable methods, to obtain the final result for
the correlation function i,

[p/2] (N N
C(P) = o kZ:;(—D ( k>(,o—2k) : (16)

So we see that the scaling$his not a power law as iRY. However, in the definition of the
attractor dimension one is interested in calculatiiig) for o — 0. Forp < 2 equation (16)
has the form

1
C(p) = sy P 17

Therefore, the same techniques applied®h can be used i2. In particular an effective
‘attractor dimension’ will be given by (14).
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4. Numerical examples

We have examined numerically several of the binary systems which have been considered in
the literature, including the randoin= 4 cellular automata [7], and some neural network
models such as those studied by Crisanfil in the context of Shannon’s entropy [2].

Random cellular automata of rarikconsist of N binary variablesS; = 0, 1 with the
following dynamical rule. For each binary variable one chooses at random a Boolean function
fi: Z’g —> Z, from k binary variables into one, among the possible functions. Then, for
eachi = 1,..., N, aset ofk numberdiy, i», ..., i} is selected at random frofd, ..., N}.

These numbers are interpreted as labels foktimputs of the Boolean function at thatThe
evolution of the system in time is given by applying the Boolean rules synchronouslyit the
variables:

Sit+ 1) = fi(Sy(®), ..., S, ). (18)

Fork > 4the system has very long cycles with periods of ordesied present the phenomenon
of damage spreading which is the standard way in which a first ‘Lyapunov exponent’ is assigned
to such systems.

In [2] Crisantiet al studied a binary neural network described by varial§les +1. The
variables evolve in parallel according to the rule

N
Sit+1 = Sgh( Z Jij S (0) (19)
=

where
_ 18 A
Jij = Jij +k‘]ij

is the synaptic matrix, Witszi = Jg andJ;; = —J;} being random independent Gaussian
variables with mean zero and variance= 1/(N — 1)(1 +k). The parameter measures the
amount of asymmetry of the synapses. ket 0 the matrix is symmetric and the network has
fixed points as attractors. Fér> 0 it is asymmetric and the network can have limit cycles as
attractors. Wheh > k. = 0.5, long limit cycles are obtained, with period of ord&riaut with
fluctuations of the same order. In [2] the Shannon entropy has been calculated numerically in
the range. < k < 0.9 and the scaling was found to be given by

h~ (k — k.)¥2.

In the limit k — 1, & attains a value which is very close to the maximum valug4ng
characteristic of a random process. All of this indicates a high degree of complexity.

However, for both of the dynamical systems (18) and (19), the dynamics is not
topologically transitive on the limit set of all periodic orbits: as we will see below, points on this
set are isolated in Hamming distance, so most points do not even have any ‘near-neighbours’
that might attempt to satisfy the conditions in the definition of topological transitivity.

The number of returns to within a Hamming distadgeof an initial point on one of the
long periodic orbits is given in figures 2 and 3 for the cellular automata (18)wth and the
neural network (19) witlk = 1.2. We have also graphed the best-fitting Gaussian curve for
comparison. The first obvious result is that there are no returnsdyitk 50 in an automata
with N = 200, in 5x 10° iterations of the dynamical map. The neural network was run with
N = 100 neurons for 5 10° iterations, and again no returns were found wfith< %. Both
the value of the nearest return and the fit to a Gaussian are consistent with a random process
which produces patterns all over the configuration space without any restriction to a possible
‘attracting subspace’. This indicates a very high degree of algorithmic complexity [8] in the
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Figure 2. The number of times & = 4 random cellular automata with = 200 returns to a
Hamming distancéy of a point half-way along the trajectory is represented as a functiaiy of
(full circles). The best-fitting Gaussian is also given for comparison (open circles).
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Figure 3. The number of returns to Hamming distanty¢ is shown, for an asymmetric neural
network withN = 100 (full circles). The best-fitting Gaussian is also given for comparison (open

circles).

time-series, which reflects a lack of predictability, like Shannon entropy which is a statistical

measure of disorder.

Without anything analogous to a transitive ‘attractor’, none of the practical applications of
chaos theory can carry through for large value®’ofThe phase space reconstruction methods
and other versions of the ‘method of analogues’ [19] fail becangsfinds no good analogue
in any finite data set, for larg&’. The lack of close returns in binary systems can often be

related to the failure to find an attractor on which the dynamics is topologically transitive.
Another example, more in the spirit of the mdpss an asymmetric neural network with
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state-dependent synapses originally designed to recognize sequences of patterns, and described
in [4]. As shown there, this system has a transition from a stable sequence reproduction to

a disordered behaviour. We shall modify the dynamical rule by introducing a memory in an
analogous way as has been done in [17], as follows:

Si(t+1) _sgn<22n ng'”s,(t—n)) (20)

where the synapses is given by

n 1 g n
R @
n=
and
1 N
S, ==Y S&"

is the correlation of the state of the network with the pattgfnThe patterng” = +1 with
w=1,..., p+T are random independent, equiprobable variables,maisda parameter of

the model. The reader not familiar with the notation of Hopfield-type neural networks may
refer to [4].

It is easy to show that the argument of the sign function referred to above as fupgtion
does in fact vanish ii2 whenT — oco. So the mag™ : @ — Q is discontinuous, and one
cannot immediately rule out the possibility of non-periodic orbits [20]. In practice, however,
one always uses a finite memory in computer simulations, so the continuity is recovered and
it is the sensitivity to initial conditions which is not valid.

In applications it is often the case that two points can be considered to be distinguishable
only if their mutual distance is greater than a small ‘cut-off’ valuelf » > 1/27 one can
then claim that the map is ‘effectively’ sensitive to initial conditions, which suggests that the
ensuing dynamics may be correctly described as being ‘approximately chaotic’. This is best
analysed by computer simulation.

We have run this system withi = 30, N = 49 neurons angp = 19 and find evidence
for a non-trivial attractor with a low effective dimension. Unlike in the examples above
there are substantially more near-returns than for a random sequence, as shown in figure 4,
and the correlation functiod(p) produces an effective dimensiap, ~ 2 in the range
0.002 < p < 0.02 (see figure 5).

For both the neural network (19) and the= 4 cellular automata (18), we observe a
very different behaviour, as expected. The correlation g&h coincides for allp, with
(16), within an accuracy of the 98% which means that~ N. This means that the orbits
are scattered in the whole spaReas one would expect from the fact that the distribution of
returns to Hamming distanek; is approximately Gaussian.

5. Conclusion

From an initial ansatz, to replace the usual idealization of physical states as ‘points’ on a
differentiable manifold by another idealization as infinite ‘binary states’, we proceeded to
define a topology which makes the truncation to finite states a valid approximation, in the
same sense that the usual topologyRdh allows one to approximate a real coordinate by a
finite string of digits or bits. This lead us to a sp&egevhich is homeomorphic to the space of
symbolic dynamics.
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Figure 4. The number of returns to Hamming distargis given for a neural network model with
memory, withN = 49. Unlike the previous examples, which correspond to dynamical systems
without memory, we find many analogues. There is one returnayjth= 0; the system did not

fall on a limit-cycle at that point because the dynamics also considers binary words further back in
time.
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Figure 5. The correlation graplV (p) gives the effective attractor dimension for the neural network
with memory,D, ~ 2 in the range @02 < p < 0.02. The distance is given by equation (3).

Continuous or discontinuous dynamical maps on the space of symbolic states can lead to
attracting sets withig2, in which case an attractor is defined in the usual way. The dynamical
map is said to be chaotic on the attractor if it is sensitive to initial conditions and topologically
transitive.

Finite systems such as neural networks and cellular automata without memory that depend
only on the previous time-step and for which the different bits have comparable importance
do not provide good approximations of chaos when the Hamming distance is used as the
metric. The absence of even an approximate manifestation of chaos has important practical
consequences—for example we found that prediction models based on a search for analogous
examples in a data set are not applicable because no good analogues are found in any reasonable
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amount of data.

The practical value of the analysis of dynamical maps on the spas@robably limited
to special complex systems problems where an extended binary description is more natural
than a continuum description. Discrete spacetime formulations of quantum gravity offer
another potentially rewarding area of applicability. There, the evidence for discrete small-scale
structure, combined with the perceived need of a spacetime ‘sum over histories’ interpretation,
leads to a formalism where one defines ‘states’ to be truncated discrete spacetime histories.
An interesting example is the causal set formalism, where a partially ordered set or Poset
is conjectured to constitute the minimal required structure to formulate a theory of quantum
gravity.

A priority in the continuation of this work is to further elucidate the chaotic properties of
neural networks and cellular automata when a compact metric compatible with the topology
of Q is given.
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